Integral points, divisibility between values of polynomials and entire curves on surfaces
نویسندگان
چکیده
We prove some new degeneracy results for integral points and entire curves on surfaces; in particular, we provide the first examples, to our knowledge, of a simply connected smooth variety whose sets of integral points are never Zariski-dense (and no entire curve has Zariski-dense image). Some of our results are connected with divisibility problems, i.e. the problem of describing the integral points in the plane where the values of some given polynomials in two variables divide the values of other given
منابع مشابه
Application of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind
In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...
متن کاملUncomputably large integral points on algebraic plane curves?
We show that the decidability of an amplification of Hilbert’s Tenth Problem in three variables implies the existence of uncomputably large integral points on certain algebraic curves. We obtain this as a corollary of a new positive complexity result: the Diophantine prefixes ∃∀∃ and ∃∃∀∃ are generically decidable. This means, taking the former prefix as an example, that we give a precise geome...
متن کاملThe Weight Distribution of Quasi-quadratic Residue Codes
In this paper, we begin by reviewing some of the known properties of QQR codes and proved that $PSL_2(p)$ acts on the extended QQR code when $p \equiv 3 \pmod 4$. Using this discovery, we then showed their weight polynomials satisfy a strong divisibility condition, namely that they are divisible by $(x^2 + y^2)^{d-1}$, where $d$ is the corresponding minimum distance. Using this result, we were ...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کامل